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We study the overall dissipation rate of highly concentrated non-colloidal suspensions
of rigid neutrally buoyant particles in a Newtonian fluid. This suspension is confined
to a finite size container, subject to shear or extensional boundary conditions at the
walls of the container. The corresponding dissipation rates determine the effective
shear viscosity µ� and the extensional effective viscosity λ�. We use recently developed
discrete network approximation techniques to obtain discrete forms for the overall
dissipation rates, and analyse their asymptotics in the limit when the characteristic
interparticle distance goes to zero. The focus is on the finite size and particle wall
effects in spatially disordered arrays. Use of the network approximation allows us
to study the dependence of µ� and λ� on variable distances between neighbouring
particles in such arrays.

Our analysis, carried out for a two-dimensional model, can be characterized as
global because it goes beyond the local analysis of flow in a single gap between two
particles and takes into account hydrodynamic interactions in the entire particle array.
The principal conclusion in the paper is that, in general, asymptotic formulae for µ�

and λ� obtained by global analysis are different from the formulae obtained from
local analysis. In particular, we show that the leading term in the asymptotics of µ� is
of lower order than suggested by the local analysis (weak blow-up), while the order of
the leading term in the asymptotics of λ� depends on the geometry of the particle array
(either weak or strong blow-up). We obtain geometric conditions on a random particle
array under which the asymptotic order of λ� coincides with the order of the local
dissipation in a gap between two neighbouring particles, and show that these condi-
tions are generic. We also provide an example of a uniformly closely packed particle
array for which the leading term in the asymptotics of λ� degenerates (weak blow-up).

1. Introduction
Concentrated suspensions are important in many industrial applications such as

drilling, transport of water-coal slurries, food processing, cosmetics and ceramics
manufacture. In nature, flows of concentrated suspensions appear as mud slides, lava
flows and soils liquefied by earthquake-induced vibrations (Shook & Roco 1991;
Carreau & Cotton 2002; Coussot 2002). An evaluation of the effective viscosity of
such suspensions is a key issue for both theory and practical applications.

An asymptotic formula for the effective viscosity of a suspension of non-colloidal
particles in a Newtonian fluid, derived by Frankel & Acrivos (1967), is based on the
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local lubrication analysis of the energy dissipation rate in the narrow gap between
a pair of nearly touching particles. The distance between two neighbouring particles
in a periodic array is the small parameter in the problem. For periodic arrays, this
interparticle distance is uniquely determined by the volume fraction of particles, so
that the asymptotics of the effective viscosity is obtained as a function of the volume
fraction φ that is close to the maximal packing volume fraction φrcp . The asymptotics
of the effective viscosity obtained by Frankel & Acrivos (1967) has the form

Aε−1 + O(ln ε−1), (1.1)

as ε → 0, where ε = 1 − (φ/φrcp)1/3. The formulae for effective viscosity of periodic

suspensions in the whole space R3 (without boundary) subject to a prescribed
linear flow, obtained by Nunan & Keller (1984), also rely on the local lubrication
analysis. Asymptotic representations for the components of the effective viscosity
tensor calculated by Nunan & Keller (1984) are of the form

Aε−1 + B ln ε−1 + O(1), (1.2)

where the leading term is, roughly speaking, generated by the local squeezing flows
in the lubrication gaps between the particles, while all other types of local motion
can contribute only to the second term. Concentrated random suspensions have
been investigated numerically by Sierou & Brady (2001, 2002) using accelerated
Stokesian dynamics. It was observed that the behaviour of the effective high-frequency
dynamic shear viscosity of disordered suspensions can be accurately described by the
asymptotic B ln ε−1, indicating degeneration of the leading term in the asymptotic
expansions (1.2) (weak blow-up). This suggests that for generic random suspensions,
the asymptotics of the effective viscosity defined by the (properly normalized) global
dissipation rate cannot be identified with the local dissipation rate in a single gap.

Finally, there is a large body of literature on colloidal suspensions. Since in
this paper we restrict our attention to non-colloidal suspensions (particles are large
enough so that Brownian forces can be neglected), we only mention the papers by Ball
& Melrose (1997a, b) in which a computational method for concentrated colloidal
suspensions was developed. Their approach has some similarities to ours, in particular
in the use of Delaunay triangulation and lubrication approximation for local squeeze
flows between neighbouring particles. However, the main issue in these papers is the
reduction of computational complexity in terms of the total number of particles,
whereas we use network theory for analysis of viscous dissipation rates.

Specifically, in this paper we use the discrete network approximation of the
dissipation rate proposed in Berlyand, Borcea & Panchenko (2005a) to study the
asymptotics of the shear effective viscosity µ� and the extensional effective viscosity
λ� corresponding to general disordered particle arrays of finite size. For such arrays,
the volume fraction alone is not sufficient for determining the effective viscosity.
In particular, from the analysis presented in this paper it follows that the values
of λ� may be dramatically different for arrays with the same volume fraction, but
with a different geometric distribution of particles. Therefore, instead of ε, we use
the interparticle distances δij between the neighbouring particles. These distances are
supposed to have the same order of magnitude δ.

The discrete dissipation rate of Berlyand et al. (2005a) accounts for the long-
range hydrodynamic interactions between the particles, and provides an algorithm
for calculation of the effective viscosity, which takes into account variable distances
between neighbouring particles in non-periodic arrays. Furthermore, Berlyand et al.
(2005a) observed that the leading term of the asymptotics may degenerate owing to
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the external boundary conditions and geometry of the particle array, whereas in the
scalar case (Berlyand & Kolpakov 2001) the order of the leading term is the same for
all particle arrays that form a connected network. This paper is devoted to a detailed
study of this degeneration phenomenon. In particular, we clarify the issue of weak
versus strong blow-up in the asymptotics of the effective viscosity.

The emphasis in this paper is on the finite size effects and role of the particle–wall
interactions (boundary conditions). Although our analysis is aimed at understanding
three-dimensional suspensions, we use a two-dimensional model for technical
simplicity. This model captures qualitative effects of weak and strong blow-up, and
at the same time it is amenable to a relatively simple mathematical analysis. We
remark here that two-dimensional models may have special features which have no
analogue in three dimensions. In this paper, we do not consider these features (see
§ 3.4, Appendix B, and Berlyand et al. 2005b for more details).

We consider a suspension confined to a finite box Ω of side length L = 2. The
particle radius a is small compared to L, and the number of particles N is close to the
maximal packing number which is finite for given a and Ω . In our study, a is fixed,
and therefore we do not pass to the classical homogenization limit a → 0, N → ∞,
in which the effects due to the particle–wall interactions (or, equivalently, prescribed
boundary conditions) may vanish. Therefore, our approach is different from the
homogenization-based procedures and our definitions of the effective viscosities are
more directly linked to the viscometric measurements, since they take into account
particle–wall and finite size effects. This seems to be in agreement with Sierou & Brady
(2002), where the notion of the universal viscosity which does not depend on the size
of the apparatus and particle–wall interactions is characterized as “questionable”. The
importance of the finite size effects is demonstrated in the paper. Indeed, we show
that the asymptotic order of the effective viscosities is determined by the interplay
between boundary velocities and the geometry of the particle array. In particular,
the leading term in the asymptotics of the shear viscosity µ� is always degenerate
(weak blow-up), while local analysis alone predicts no degeneration (strong blow-up).
The asymptotic order of the extensional viscosity λ� depends on the geometry of the
particle array. We prove that for generic arrays, the leading-order term of λ� does not
degenerate. This non-degeneration is linked to the percolation of the local squeezing
flows in the lubrication gaps. Thus, for a generic array, µ� and λ� have vastly different
values, and their ratio depends on the typical interparticle distance. In the paper, µ� is
defined via the off-diagonal component of the effective stress, while the definition of
λ� involves the effective normal stress difference (see (2.14), (2.17) below). Therefore,
our results suggest that the diagonal and off-diagonal components of the effective
stress have different asymptotic scalings. The same conclusion was reached by Sierou
& Brady (2002) who investigated effective stress in shear flow by means of numerical
simulations using accelerated Stokesian dynamics.

2. From continuum to discrete dissipation rate. Network approximation
2.1. Mathematical model

We consider a non-colloidal concentrated suspension of rigid neutrally buoyant
particles in a viscous incompressible Newtonian fluid. The quasi-static fluid flow at
low Reynolds number is governed by Stokes equations

µ�v − ∇P = 0, div v = 0 in ΩF . (2.1)

where µ is the fluid viscosity, v the velocity field, and P is the pressure.
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Figure 1. A concentrated suspension in a domain Ω .

The suspension is confined to a square box Ω of side length L = 2. The part of
Ω which is not occupied by the particles is the fluid domain, denoted by ΩF . The
boundary of Ω is denoted by ∂Ω . The upper and lower sides of ∂Ω are denoted by
∂Ω+ = {x : x2 = 1} and ∂Ω− = {x : x2 = − 1}, respectively. We also let e1, e2 denote
the Cartesian basis vectors parallel to the sides of ∂Ω (see figure 1). The particles Dj ,
j = 1, 2, . . . , N are modelled as rigid disks with centres xj , placed in Ω .

We study shear and extensional boundary conditions applied on ∂Ω+, ∂Ω− (upper
and lower walls of the apparatus) (Schowalter 1978). The shear type boundary
conditions are given by

v|∂Ω ≡ g =

( 1
2
γL

0

)
on ∂Ω+, v|∂Ω ≡ g =

(− 1
2
γL

0

)
on ∂Ω−, (2.2)

where γ is the shear rate. These boundary conditions are obtained by restricting the
shear flow velocity

v0
sh =

(
γ x2

0

)
(2.3)

to the upper (∂Ω+) and lower (∂Ω−) parts of ∂Ω . Similarly, for extensional flows,
the extension rate is ε (note the difference in notation from ε employed in § 1), and
the boundary conditions are obtained by restricting the velocity field

v0
ext =

(
εx1

−εx2

)
(2.4)

to ∂Ω±, which results in

g =

(
εx1

− 1
2
εL

)
on ∂Ω+, g =

(
εx1

1
2
εL

)
on ∂Ω−. (2.5)

The lateral part of the boundary is supposed to be traction-free.



blow-up of dissipation rate for concentrated suspensions 5

To define particle velocities, we first recall that a rigid body moving in the plane
with the basis e1, e2 has a velocity vector of the form

vj (x) = T j + ωj e3 × (x − xj ), x ∈ Dj, (2.6)

where T j , ωj are translational and angular velocities, respectively. In (2.6), e3 is the
unit vector perpendicular to the plane of motion. Both T j and ωj are unknown
and must be determined in the course of solving the problem, together with the
fluid velocity and pressure. Each particle Dj moves with the velocity (2.6) from its
original equilibrium position to a new equilibrium position after the external boundary
conditions are applied. Since the particles are neutrally buoyant, and each rigid disk
is in equilibrium, the total force and torque exerted on Dj by the fluid must be zero,
which provides the boundary conditions on the particle boundaries ∂Dj :∫

∂Dj

Snj ds = 0,

∫
∂Dj

nj × Sn(j ) ds = 0, for j = 1, 2, . . . , N, (2.7)

where nj is the exterior unit normal to ∂Dj , and

S = 2µe(v) − P I. (2.8)

In (2.8) and throughout the paper, e(v) denotes the strain rate tensor defined by

e(v) = 1
2
(∇v + (∇v)T ), (2.9)

the superscript T stands for the transposed tensor, and I denotes the unit tensor.
The problem of finding the fluid velocity satisfying the boundary conditions (2.6),

(2.7) can be cast in the variational form (see, e.g. Kim & Karilla 1991, § 2.2.2). The
actual fluid flow velocity minimizes the dissipation rate functional

WΩF
(u) = 2

∫
ΩF

e(u)ij e(u)ij dx, (2.10)

over all admissible velocity fields u. An admissible velocity field lies in a class U of
appropriately smooth divergence-free trial vector functions that satisfy the prescribed
boundary conditions on the external boundary and the conditions (2.6) on the particle
boundaries. We also recall that conditions (2.7) are known in calculus of variations
as natural boundary conditions, which means that the trial functions need not satisfy
these conditions, but the minimizer (the actual fluid velocity field) should satisfy them.

Equation (2.10) means, in particular, that the energy dissipation rate E in the fluid
is the minimal value of WΩF

, attained when the trial field u is the actual velocity filed
v. Concisely,

E = WΩF
(v) = min

u∈U
WΩF

(u). (2.11)

Equation (2.11) is important, since calculation of the effective viscosities essentially
amounts to calculation of E, as seen in the next section. Also, note that any trial
function u from U provides an upper bound for E, namely E � WΩF

(u).

2.2. Effective shear and extensional viscosities

2.2.1. Effective dissipation rates

We assume that the suspension can be modelled on a macroscale by a single-phase
fluid, called an effective fluid. This assumption is consistent with most of the numerical
and experimental studies of effective viscosity ranging from the dilute limit to high
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concentration (Einstein 1906a, b; Frankel & Acrivos 1967; Batchelor & Green 1972;
Kim & Karilla 1991).

The velocity field of the effective fluid is denoted by v0. The effective fluid is subject
to the same external boundary conditions as the flow of the suspension.

In this paper, we do not derive or postulate the precise from of the constitutive
law for the effective fluid. For our purposes, it is sufficient to assume simply that the
effective stress tensor S0 is constant whenever the effective strain rate e(v0) is constant
(in other words, the effective fluid is homogeneous). The possible constitutive relations
are explored indirectly, by using the fundamental principle (Einstein 1906a, b), that
the viscous energy dissipation rate of the suspension must be equal to the dissipation
rate of the effective homogeneous fluid. The dissipation rates are defined by

E =

∫
ΩF

S · e(v) dx = 2µ

∫
ΩF

e(v) · e(v) dx (2.12)

in the suspension, and

E0 =

∫
Ω

S0 · e(v0) dx, (2.13)

in the effective fluid. In the equations (2.12), (2.13), S · e = Sijeij is the inner product
of tensors.

For small particle volume fractions, (Einstein 1906a, b; Batchelor & Green 1972),
this principle was further combined with the assumption that the effective fluid is
Newtonian with a constant effective viscosity. However, for concentrated suspensions
this assumption is not validated by a rigorous mathematical derivation or experimental
measurements, and at present the question of finding the effective constitutive law
for such suspensions is still open. Theoretical studies by Brady & Morris (1997) have
shown that the high-Péclet number limit (when the Brownian forces are much weaker
than hydrodynamic forces) is singular and produces non-Newtonian behaviour. Our
calculations of the effective viscosity also suggest non-Newtonian behaviour for
irregular (non-periodic or random) suspensions in containers of finite size.

We use the rheological definitions of shear and extensional viscosities as ratios of
the corresponding components of the stress and strain rate tensors. To calculate the
asymptotics of the two viscosities, we employ the network approximation introduced
in (Berlyand et al. 2005a). We analyse the network functional (discrete dissipation
rate) introduced in Berlyand et al. (2005a) and show that the standard relation
between two viscosities which holds for Newtonian fluids (see, chap. 9 Schowalter
1978 for the three-dimensional case and Appendix A for two-dimensional case) does
not hold. Indeed, we show that for generic disordered arrays, the ratio of the two
effective viscosities blows up as the reciprocal of the typical interparticle distance.
This suggests different asymptotic scaling for components of the effective stress tensor
and is therefore an indicator of the non-Newtonian behaviour, detected numerically
in Sierou & Brady (2002) (see also Stickel & Powell (2005) for a discussion of
non-Newtonian rheology of concentrated suspensions).

Finally, in this paper we are concerned with the instantaneous effective viscosity,
and therefore we do not consider the evolution problem. However, we study arbitrary
arrays of particles, which makes it possible to extend our analysis to evolution of
microstructure problems. Clearly, analysis of the instantaneous response for arbitrary
arrays is an unavoidable step in understanding of the evolution problem.
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2.2.2. Shear viscosity

Suppose that a homogeneous effective fluid undergoes a steady shear flow with the
shear rate γ . The velocity field vsh satisfies the shear type boundary conditions (2.2).
The effective shear viscosity is defined by (see (A 2))

µ� =
S0

12

γ
= 2

E0

γ 2|Ω | , (2.14)

where S0
12 is the corresponding component of the effective stress tensor and |Ω | =∫

Ω
dx. Since E = E0, the equivalent definition is

µ� = 2Eγ −2|Ω |−1 = 4µγ −2|Ω |−1

∫
ΩF

e(vsh) · e(vsh) dx. (2.15)

Thus the calculation of µ� amounts to evaluation of the total dissipation rate integral

Esh = 2µ

∫
ΩF

e(vsh) · e(vsh) dx, (2.16)

where vsh solves (2.1)–(2.7).

2.2.3. Extensional viscosity

A steady extensional flow of the effective fluid is characterized by a constant
extension rate ε. The velocity v0

ext satisfies the extensional boundary conditions (2.5).
The extensional viscosity (see, e.g. Schowalter 1978, chap. 9) may be defined by

λ� =
S0

11 − S0
22

ε
, (2.17)

where S0
11, S

0
22 are components of the effective stress tensor. Since E0 =∫

Ω
S0 · e(v)0ext dx = (S0

11 − S0
22)ε|Ω |, the effective extensional viscosity can be defined

in terms of the suspension dissipation rate E, as follows.

λ� =
E

ε2|Ω | = 2µε−2|Ω |−1

∫
ΩF

e(vext ) · e(vext ) dx, (2.18)

and calculation of λ� again reduces to evaluation of the total dissipation rate
(2.16) with vsh replaced by vext . In the remaining part of the paper we derive
asymptotic formulae for the total dissipation rate under shear and extensional
boundary conditions.

2.3. Discrete network

Let us consider an arbitrary distribution of circular particles (disks) Di of radius a.
The particle centres are points xi , i = 1, 2, . . . , N . We consider the case when N is
close to the maximal close-packing number, which is finite and independent of δ. We
are interested in a high concentration regime when neighbouring particles are close to
touching. Note that while for a periodic array the notion of a neighbouring particle
is obvious, for disordered arrays it is not immediate. We introduce it via a Voronoi
tessellation (Edelsbrunner 2000). The central notion here is that of a Voronoi cell Vi

which is a polygon that consists of all points in the plane which are closer to xi than
to any other particle centre xj , j �= i. Each Voronoi cell contains only one particle
centre, and different Voronoi cells do not overlap. Together, Voronoi cells form a
partition of Ω .

Definition 2.1. We call particles Dj , Di neighbours if their centres xi and xj have
a common edge in the Voronoi tessellation, that is, the corresponding Voronoi polygons
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L.

Ri j

Π i j
Π i

DiDi

Di Wall

Figure 2. An interparticle gap Πij between Di and Dj and a particle–wall gap Πi .

Vi and Vj share an edge. Furthermore, we call a particle Di adjacent to the boundary
if the corresponding Voronoi cell has an edge that belongs either to upper (∂Ω+) or
lower (∂Ω−) portions of the boundary of Ω . For each i = 1, 2, . . . , N , define the index
sets Ni , I by

Ni = {j ∈ {1, 2, . . . , N}, j �= i, such that Dj is a neighbour of Di}, (2.19)

I = {i ∈ {1, 2, . . . , N} such that Di is adjacent to the boundary}. (2.20)

The minimal distance between neighbouring particles Di and Dj is given by

δij = |xi − xj | − 2a. (2.21)

We call δij interparticle distances. If a disk Di is adjacent to the boundary, we define
the particle–wall minimal distance δi by

δi = dist(xi , ∂Ω) − a. (2.22)

To model the high-concentration regime, we assume that δij and δi satisfy

δij = δdij , δi = δdi, (2.23)

where δ � 1 is a small non-dimensional parameter in the problem, and the scaled (by
δ) interparticle distances dij , di satisfy

0 < c � dij � 1, c � di � 1, (2.24)

with an absolute constant c independent of i, j . The inequality (2.24) describes the
case when neighbouring particles are close to each other but do not touch.

For each pair of neighbouring particles Di and Dj , we introduce an interior
lubrication gap Πij which represents a narrow fluid region where lubrication effects
are very strong, as shown on figure 2. The orientation of each interior gap Πij relative
to a disk Di is specified by a unit vector

q ij =
xi − xj

|xi − xj | . (2.25)

We also let pij be the unit vector obtained by rotating q ij clockwise by π/2 (see
figure 3). For each particle Di adjacent to the boundary, we introduce a particle wall
lubrication gap Πi . These gaps are always oriented perpendicular to the wall, which
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T i

T j

ω j

ωi
qij

q ji

pij

q ji

D j

Figure 3. Assignment of T i , ωi and orientation of the gap between two neighbouring
particles.

Interior edge

Interior vertex

Boundary edge

Boundary vertex

Figure 4. The suspension and the corresponding network.

means that the orientation vectors q i are vertical, while pi are horizontal. This reflects
the physical fact that the zone of the largest energy dissipation is located near the
shortest line connecting xi with the boundary. The vectors q i always point away from
Di toward the wall. Therefore, q i = e2, (respectively, −e2), when Di is adjacent to
∂Ω+ (respectively, ∂Ω−).

The network denoted by Γ is a graph (a set of vertices connected by edges)
corresponding to the particle array together with the interior and particle–wall
lubrication gaps. The centres of the particles xi are called the interior vertices of
the network, and the lubrication gaps are represented by the edges connecting either
two neighbouring vertices (interior edges), or a vertex and the wall (boundary edges).
The points of intersection of boundary edges with the boundary are called boundary
vertices. These are also included into the network (see figure 4).

Note that Γ is essentially the Delaunay graph (Edelsbrunner 2000) dual to the
Voronoi tessellation, and the above notions admit straightforward generalization to
three dimensions.

2.4. Discrete dissipation form. Approximation of the dissipation rate
and effective viscosities

To define the network approximation, we first assign a translational velocity T i

and an angular velocity ωi of a particle Di to the corresponding interior vertex xi .
At the boundary vertices, we prescribe the velocity vector g which represents the
boundary conditions (either shear or extensional). Next, to each edge of the network



10 L. Berlyand and A. Panchenko

Shear motion RotationSqueeze motion

Figure 5. Three elementary motions. Arrows represent the boundary conditions.

we associate a dissipation rate Wij (Wi), calculated in the corresponding gap Πij

(Πi). The calculation of the dissipation rates employs lubrication approximation in
the gap. The velocity in the gap is decomposed into three velocities, representing the
‘elementary’ motions called squeeze motion, shear and rotation (see figure 5). The total
velocity field in a gap is the sum of these elementary velocities and a residual velocity
field, whose contribution to the gap dissipation rate is O(1) as δ → 0. Lubrication
approximations for each of the elementary velocities and estimates for the residual
can be found in Berlyand et al. (2005a).

Using approximations of the elementary velocities to calculate (up to the terms of
order O(1) as δ → 0) the dissipation rates in each gap we obtain

Wij = δ−3/2Cij
sp[(T i − T j ) · q ij ]2

+ δ−1/2C
ij
sh[(T

i − T j ) · pij + aωi + aωj ]2 + δ−1/2C
ij
rota

2(ωi − ωj )2, (2.26)

in the interior gaps Πij , and

Wi = δ−3/2Ci
sp[(T i −g) · q i]2+δ−1/2Ci

rota
2(2ωi)2+δ−1/2Ci

sh[(T
i −g) · pi+aωi]2 (2.27)

in the particle–wall gaps Πi . The expressions for factors Cij
sp, C

ij
sh, C

ij
rot and Ci

sp, Ci
sh, C

i
rot

are calculated explicitly in Berlyand et al. (2005a):

Cij
sp = 3

4
πµ

(
a

dij

)3/2

+
27

10
πµ

(
a

dij

)1/2

, Ci
sp = 3

4
πµ

(
a

di

)3/2

+
27

10
πµ

(
a

di

)1/2

,

C
ij
sh = 1

2
πµ

(
a

dij

)1/2

, Ci
sh = 1

2
πµ

(
a

di

)1/2

,

C
ij
rot =

9
16

πµ

(
a

dij

)1/2

. Ci
rot =

9
16

πµ

(
a

di

)1/2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.28)

In the formula (2.28), dij , di are the scaled interparticle distances defined in (2.24).
The sum of the local dissipation rates Wij , W i is a quadratic form Q =

∑
Πij

W ij +∑
Πi

W i on the unknown translational velocities T i and angular velocities ωi of the

particles Di . It also depends on the prescribed velocity g of the walls via the terms
Wi .

The form Q is the called the discrete dissipation form. It provides an approximation
for the continuum dissipation rate functional WΩF

in the variational principle (2.10).
An explicit expression for Q is presented in Appendix B, equation (B 1).
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The main idea of the network approximation is that most of the energy is dissipated
in the gaps Πij , Πi , so that the exact dissipation rate E (the minimum of WΩF

) is
approximately equal to the discrete dissipation rate Ed which is the minimum of Q:

min WΩF
≡ E = Ed + O(1) ≡ min Q + O(1) as δ → 0. (2.29)

Here, O(1) denotes quantities which are bounded by a constant as δ goes to zero.
Since in this limit Ed blows up, O(1) represents a small discrepancy between the
actual dissipation rate and its discrete approximation. The minimum of Q is taken
over all possible collections of particle velocities T i , ωi . This is not surprising, since
the trial functions in the admissible class U for the continuum dissipation functional
WΩF

may have arbitrary translational and angular velocities on the particles. The
continuum problem is constrained by the prescribed external boundary conditions.
In the discrete approximation, the boundary conditions g are explicitly incorporated
into the formula for Q via (2.27).

3. Analysis of the discrete dissipation rate
3.1. Truncation of the discrete dissipation functional and overview of the related

computational issues

The two major factors that determine asymptotic behaviour of the discrete dissipation
form Q are geometry of the network and the nature of the boundary conditions. The
objective of this section is to analyse in detail the role of both of these factors.
Separating terms of different orders in δ, we decompose the form Q as follows.

Q = δ−3/2Q̂ + δ−1/2Q′, (3.1)

where the coefficients of the forms Q̂ and Q′ do not depend on δ. For future reference,

we give the explicit equation for Q̂:

Q̂ =
1

2

N∑
i=1

∑
j∈Ni

Cij
sp[(T i − T j ) · q ij ]2 +

∑
i∈I

Ci
sp[(T i − g) · q i]2, (3.2)

where the second summation is taken over all vertices adjacent to the boundary.
Note that Q̂ depends only on translational velocities due to squeezing motions, while
the contributions from other types of local motions (both angular and translational

velocities) are absorbed into Q′. Since the functional Q̂ is simpler than Q, we want to
estimate the discrete dissipation rate Ed (the minimum of Q) in terms of the minimum
of Q̂. The obvious problem here is that the collection of velocities that minimizes Q
would not necessarily minimize Q̂ and vica versa. To clarify this issue, denote the
minimal value of Q̂ by Ê, and suppose that this minimal value is attained for the (δ-

independent) translational velocities T̂ i . Furthermore, we denote by T i
min, ω

i
min the

translational and angular velocities minimizing the complete functional Q. Then we
can write

δ−3/2Ê ≡ δ−3/2Q̂(T̂ i) � δ−3/2Q̂
(
T i

min, ω
i
min

)
� Ed

≡ Q
(
T i

min, ω
i
min

)
� δ−3/2Q̂(T̂ i) + δ−1/2Q′(T̂

1
, . . . , T̂

N
, ω1 = ω2 = . . . = ωN = 0). (3.3)

The first inequality is true since T i
min, ω

i
min is not in general a minimizer for Q̂, so

inserting them into Q̂ produces the value that is larger than Ê. The second inequality

is true because δ−3/2Q̂ is a part of Q, and the difference Q − δ−3/2Q̂ = δ−1/2Q′, is a
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sum of squares and is therefore non-negative. Finally, the last inequality holds because

the collection T i = T̂
i
, ωi = 0, i = 1, . . . , N , corresponding to purely translational

flow of particles, is an admissible trial velocity field, but not necessarily the actual
collection of velocities minimizing Q.

Since coefficients of Q′ are δ-independent, and the minimizing collection for Q̂ is

also independent of δ, δ−1/2Q′(T̂ i , ωi = 0) = O(δ−1/2), and (3.3) yields δ−3/2Ê � Ed �
δ−3/2Ê + O(δ−1/2), and thus

Ed = δ−3/2Ê + O(δ−1/2) as δ → 0, (3.4)

Equation (3.4) enables us to calculate the leading term in the asymptotics of the
effective viscosity by solving a simplified minimization problem involving only the
translational particle velocities (rotations are neglected). To the leading order in δ,

the effective viscosities are determined by the discrete dissipation rate δ−3/2Ê where
Ê is the minimum of Q̂. However, this algorithm is useful only when

Ê > 0, (3.5)

because, in this case, the leading term in the asymptotics of the dissipation rate is

of order δ−3/2. We shall call this situation the strong blow-up. If min Q̂ = 0, the
leading term degenerates, and the rate of blow-up of Ed is at most δ−1/2 (the weak
blow-up). When weak blow-up occurs, the full form Q has to be minimized to obtain
the asymptotics of the effective viscosity. The simple but important observation here
is that for the shear boundary conditions, the leading term is always degenerate. To

explain this, consider dependence of Q̂ on the boundary conditions. The second sum
in (3.2) represents the contribution of the particle–wall gaps and depends on the
prescribed wall velocity g, but this dependence occurs only via the products g · q i ,

where q i are perpendicular to the wall. Therefore, Q̂ would depend on the boundary
conditions only if the prescribed velocity g has a component perpendicular to the
wall. In the case of the shear boundary conditions, g is directed parallel to the walls,
and thus all scalar products containing g in (3.2) vanish, and therefore it is easy to

choose virtual trial velocities so that Q̂ is zero.
It is well known that solving the minimization problem for Q is equivalent to solving

the linear algebraic system of equations (the so-called Euler–Lagrange equations),
obtained by equating to zero all partial derivatives of Q in T i

k , ωi . The resulting linear
system of equations (B 2), (B 7), presented in Appendix B, gives the force and torque
balance for the particles, and the minimization of Q ensures that the rigid-body
translational and angular velocities are chosen in such a way that the suspension is
in mechanical equilibrium. The structure of the system (B 2), (B 7) can be seen by
writing it in a compact form, as follows. Gathering the unknown components of the
minimizing velocities T i

min and ωi
min in a single vector of unknowns z, we can write

the network equations as(
δ−3/2A + δ−1/2B

)
z = δ−3/2 f + δ−1/2h, (3.6)

where A, B are matrices that depend on q ij , pij , and q i , pi , as well as on a and dij , di .
Note that A, B do not depend explicitly on δ, and their size remains bounded above
as δ tends to zero. In fact, the size depends only on the number of particles N . We
consider N as large but finite (smaller than the maximal close packing number).

The right-hand side of (3.6) corresponds to the terms of Q that depend on the
given wall velocity g, given by either (2.2) or (2.5), as well as on q i , pi , a and di .
In particular, f depends on g only through the products g · q i , while h depends
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on products g · pi . Therefore, as explained above, in the case of shear boundary
conditions f = 0, which results in the weak blow-up of the effective shear viscosity
µ�. More details on the justification of the weak blow-up for µ� are given in § 3.2.

Let us now turn to a more complicated case of extensional conditions. In this case
f �= 0 in (3.6), which means that the right-hand side of (3.6) contains terms of order
δ−3/2. Therefore, in order to calculate the leading term in the asymptotics of λ∗, one

could attempt to minimize the simpler functional Q̂. Similarly to (3.6), the minimizers

T̂
i
of the truncated functional Q̂ solve the following truncated system of equations

Az = f , (3.7)

A more explicit form of (3.7) (obtained from the minimization conditions ∂Q̂/∂T i
k

= 0) is ∑
j∈Ni

Cij
sp[(T̂

i
− T̂

j
) · q ij ]q ij + B(T̂ i) = Ri (i = 1, 2, . . . , N), (3.8)

where

B(T̂ i) =

{
Ci

sp(T̂ i · q i)q i when i ∈ I,

0 otherwise,
(3.9)

and

Ri =

{
Ci

sp(g · q i)q i when i ∈ I,

0 otherwise.
(3.10)

The important computational issue related to (3.7) is that the matrix A is not
invertible. Indeed, the homogeneous system corresponding to (3.8) has (infinitely
many) non-trivial solutions. In particular, vectors of the form

T i = t

(
1
0

)
(3.11)

solve this system for each real t .
From the computational point of view, the fact that the homogeneous system

Az = 0 (3.12)

has non-trivial solutions, implies by the standard results from linear algebra that
determinant of A must be zero. Therefore, the non-homogeneous system (3.8) either
has multiple solutions or else is non-solvable. It also follows from (3.11), (3.12) that

any minimizer {T i}, i = 1, 2, . . . , N of Q̂ is not unique because it can be replaced

by {T i + t(1, 0)} without changing the value of Q̂. It is very important to find out if
the homogeneous system (3.12) has non-trivial solutions other than (3.11), since the
presence of such solutions might signal that the algebraic procedure for evaluating the
leading term will not in general produce a unique number. Therefore, it makes sense
to look for conditions on the network which would guarantee that every solution of
the homogeneous system is of the form (3.11). Then the non-homogeneous system
(3.8) would be uniquely solvable up to horizontal translation. In § 3.3.2, we show that
for a typical random distribution of particles this is indeed the case.

Then the above computational issue is resolved, the asymptotic order of the
extensional viscosity depends on the validity of the estimate (3.5). The functional

Q̂ is non-negative, but it may be zero. When (3.5) holds, local lubrication analysis
provides the correct order of the leading term in the asymptotics of the extensional
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The wall is moving with velocity     γL

The wall is moving with velocity –     γL

All particles are translating with
velocity (1,0)

1
2

__

1
2

__

Figure 6. A cluster of particles moves as a rigid body in the horizontal direction. All the
energy dissipation occurs in the boundary layers.

effective viscosity (δ−3/2 in dimension two and δ−1 in dimension three). If (3.5) does
not hold, that is,

min Q̂ = 0, (3.13)

then the leading term in the asymptotics of λ� in dimension two is of order δ−1/2,
(ln(1/δ) in dimension three).

Whether or not the estimate (3.5) holds, depends on the geometry of the particle
array as well as the boundary conditions on ∂Ω+ and ∂Ω−. In § 3.3.2, we show that
in the case of extensional boundary conditions, (3.5) holds for generic arrays, and
thus the leading term in the asymptotic of Ed (and extensional effective viscosity λ∗,
see (2.18)) is of the order δ−3/2. However, for some special arrays, λ� is of order δ−1/2.
An example of such an array is presented in § 3.3.1.

The final remark concerns the physical meaning of velocities (3.11) in a shear flow.
These velocities are compatible with the shear boundary conditions, for which the
right-hand side in (3.7) is zero. This means that the shear boundary conditions do

not contribute to the leading-order form Q̂, and can be viewed as zero boundary
conditions on the scale δ−3/2. In this case, the velocities (3.11) correspond to a plane
parallel flow of particles (so all the particles translate a single rigid body in the
horizontal direction) while the walls of the apparatus move with different horizontal
velocities. In that case, all the dissipation takes place in two thin boundary layers
near the walls (see figure 6).

3.2. Effective shear viscosity

In this section we show that in dimension two, the asymptotic order of the shear
effective viscosity µ� is δ−1/2, while the local lubrication analysis predicts the rate δ−3/2.
Hereinafter, local analysis means using a lubrication approximation to approximate
the dissipation rate in a single gap between two nearly touching neighbouring particles.
In three dimensions, δ−1/2 and δ−3/2 should be replaced by, respectively, ln δ−1 and
δ−1 (see Berlyand et al. 2005a). The local analysis in three dimensions predicts (see
Frankel & Acrivos 1967; Berlyand et al. 2005a) that the asymptotics of the shear
effective viscosity µ� (see (2.15)) should be of order δ−1, but numerical simulations of
Sierou & Brady (2001) (their article also quotes experimental results of Van der Werff
et al. 1989 and Shikata & Pearson 1994) show that random suspensions in shear flow
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have effective viscosity of order ln δ−1. Our estimate µ� = O(δ−1/2) is therefore in
agreement with the three-dimensional results in Sierou & Brady (2001), also showing
the weak blow-up.

The decrease in the asymptotic order of µ� is a global phenomenon in the following
sense. It shows that the local analysis could be misleading, and global analysis of the
entire particle array is necessary.

In the case of the shear boundary conditions, the velocity at the boundary is
oriented perpendicular to the particle–wall gaps, and thus g · q i = 0 for all such
gaps. Consequently, the vectors Ri in (3.10) are zero, and the system (3.7) becomes
homogeneous. This means that the shear boundary conditions do not produce strong

blow-up of the dissipation rate, because the leading-order form Q̂ becomes Az · z
which is clearly zero for every solution of the homogeneous system Az = 0. We know
that there are multiple non-trivial solutions of (3.12) given by (3.11). Moreover, the
total dissipation rate Ed is given by a variational (minimization) principle for the full
form Q. Therefore, to obtain an upper bound on Ed , it is sufficient to evaluate Q on
any collection of admissible velocities compatible with the shear boundary conditions.
In particular, we can take the trial velocities such that all T i = 0 and all ωi = 0.

This collection makes Q̂ zero (since T i = 0 are of the general form (3.11)), and thus
the leading term of Q degenerates. Substituting T i = 0, ωi = 0 into (2.26), (2.27) and
summing up over all gaps, we obtain

µ� = CEd � CQ(T i = 0, ωi = 0) = Cδ−1/2
∑
i∈I

Ci
sh(g · pi)2, (3.14)

where C = 2γ −2|Ω |−1 (see (2.15)), and the summation is over all particle–wall gaps.
Next we note that g · pi = γ for all values of i, which implies

µ� � 2δ−1/2|Ω |−1
∑
i∈I

Ci
sh. (3.15)

Since the number of particle–wall gaps is finite, and the values of Ci
sh defined in (2.28)

are independent of δ, we finally arrive at an upper bound on µ�:

µ� � C1δ
−1/2, (3.16)

where C1 is independent of δ.
From the continuum mechanics point of view, zero velocity field corresponds to

the flow in which all the particles form a motionless cluster, while the walls of the
apparatus move with the horizontal velocities given by (2.2) (see figure 6, and set
t = 0). Then the entire dissipation is produced in the two narrow boundary layers
between the particle cluster and the walls, where the shear deformation takes place.
Since classical lubrication approximation shows that the dissipation rate in such
layers exhibits weak blow-up, the entire dissipation rate must exhibit weak blow-up.
We emphasize that (3.15) is only an upper bound for µ∗, and by no means an
approximation. The actual value of µ∗ can be much smaller than the right-hand side
of (3.15). Similarly, the zero-velocity particle field is not an approximation of the
actual particle velocities that determine the exact value of µ∗. Calculation of actual
velocities is a much more difficult task than estimating the minimum of Q from the
above. The method of estimation provides us with a simple procedure for proving
that the asymptotic order of µ∗ cannot be larger than δ−1/2.

To understand better the nature of the actual flow, we find the exact velocity fields
for a simple example of a two-disk network on figure 7, subject to the shear boundary
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Figure 7. A two-disk network with shear boundary conditions.

conditions with γ = 1. The functional Q in this example can be written as follows

Q = δ−3/2
{
C12

sp [(T 1 − T 2) · q12]2 + C1
sp[(T 1 − e1) · e2]

2 + C2
sp[(T 2 + e1) · e2]

2
}

+ δ−1/2
{
C12

sh [(T 1 − T 2) · p12 + aω1 + aω2]
2 + C12

rota
2(ω1 − ω2)

2
}

+ δ−1/2
{
C1

sh[(T
1 − e1) · e1 + aω1]

2 + C2
sh[(T

2 + e1) · e1 + aω2]
2
}

+ δ−1/2
{
4C1

rota
2ω1

2 + 4C2
rota

2ω2
2
}
. (3.17)

For simplicity, we assume that D1 and D2 are located the same distance away from the
boundary. In that case, C1

sp = C2
sp, C1

sh = C2
sh, C

1
rot = C2

rot , so we can drop superscripts,

and look for a solution such that T 2 = −T 1 ≡ −T , ω1 = ω2 ≡ ω. Next we write the
minimization conditions ∂Q/∂Tk = 0, ∂Q/∂ω = 0, and cancel the highest negative
powers of δ. This yields the following network equations (compare with (3.6)):

2C12
sp [T · q12]q12 + Csp[T · q1]q1

+ δ
{
2C12

sh [T · p12 + aω] p12 + Csh[T · p1 + aω] p1
}

= δCshe1, (3.18)

and

C12
sh [T · p12 + aω] + Csh[T · p1 + aω] + 4aCrotω = Csh. (3.19)

Next, we find aω from (3.19) and substitute into (3.18). Then, projecting the vector
equation (3.18) onto the coordinate axes produces two scalar equations for two
components of T :

2C12
sp (T · q12)q12

1 + δ[T · ( p12 − A−1k)p12
1 + δCshT · ( p1 − A−1k)]

= δCsh(1 − 2A−1Cshp
12
1 − A−1Csh), (3.20)

and

2C12
sp (T · q12)q12

2 +CspT · e2 + δ[T · ( p12 −A−1k)p12
2 + δCshT · ( p1 −A−1k)] = 0, (3.21)

where A = 2C12
sh +Csh +4Crot , and k = 2C12

sh p12 +Csh p1. The system (3.20), (3.21) can
be written concisely as

MT + δLT = δF, (3.22)
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where the matrix

M = 2C12
sp

⎛⎝(
q12

1

)2
q12

1 q12
2

q12
1 q12

2

(
q12

2

)2
+ Csp

(
2C12

sp

)−1

⎞⎠ (3.23)

has determinant Csp(q12
1 )2, which is non-zero because q12

1 �= 0 (q12 is non-vertical).
Since M−1 exist, we can write

T = δ(I + δM−1L)−1M−1 F = δ

∞∑
j=0

δj (M−1L)jM−1F, (3.24)

which yields the following asymptotics.

T 1 = −T 2 = δM−1 F + O(δ2) = O(δ), (3.25)

ω1 = ω2 =
Csh

aA
− δ(aA)−1M−1 F · k + O(δ2) = O(1),

as δ → 0.
This example shows that small translational velocities (of order δ) may produce

large dissipation (of order δ−1/2) as long as the velocities are oriented in the correct
way, as in a local squeeze motion. By contrast, certain large velocities produce either
no dissipation, or a dissipation of order one. Indeed, if both particles move as a single
rigid body, then the dissipation due to this motion is zero, regardless of the velocity
magnitude.

The objective of our paper is to find the overall dissipation rate rather than the local
structure of the velocity field in particle shear flow. This example provides us with
some insight, but not with the complete description of the local flow. Also, the particle
velocities that appear in our discrete dissipation form are approximate: the smaller δ

is, the better the approximation. The latter can be made precise since approximation
of the dissipation rates (convergence in integral norms) implies an approximation of
the corresponding velocity fields (point-wise convergence of a subsequence).

3.3. Extensional effective viscosity

3.3.1. Simplification of boundary conditions

In this section, we show that for the extensional boundary conditions, the leading
term in the asymptotics of the dissipation rate E from (3.4) may or may not be
zero, depending on the geometry of a particle array, that is, the leading term in the
asymptotics of the effective extensional viscosity is either of order δ−3/2 (strong blow-
up) or δ−1/2 (weak blow-up). We provide two geometric conditions on the network
graph which ensure strong blow-up.

In a planar steady extensional flow of the effective fluid, the rate of strain tensor is

e(v0) =

(
ε 0
0 −ε

)
, (3.26)

where ε denotes a constant extension rate. The corresponding velocity field is of the
form

v0 =

(
εx1

−εx2

)
, (3.27)



18 L. Berlyand and A. Panchenko

which gives the boundary conditions

v0 =

{(
εx1,

1
2

− εL
)

when x2 = L/2 = 1 (on ∂Ω+),(
εx1,

1
2
εL

)
when x2 = −L/2 = −1 (on ∂Ω−).

(3.28)

We decompose v0 as

v0 = v0
vc + v0

ge, (3.29)

where v0
vc is a vertical contraction velocity satisfying

v0
vc = gvc =

{
−εe2 on ∂Ω+,

εe2 on ∂Ω−,
(3.30)

and v0
ge is the horizontal extension velocity field with the boundary conditions given

by

v0
ge = gge =

{
εx1e1 on ∂Ω+,

εx1e1 on ∂Ω−.
(3.31)

Note that g = gvc + gge, and the boundary edges are orthogonal to the boundary

(gge⊥q i , i ∈ I ). Therefore the value of Q̂ in (3.2) does not change when g in (3.2) is
replaced by gvc, and we can write the total discrete dissipation form as

Q(T i , ωi, g) = δ−3/2Q̂(T i , gvc) + δ−1/2Q′(T i , ωi, gvc + gge), (3.32)

where we have included an explicit dependence on the boundary conditions. To
determine the rate of blow-up of the dissipation rate, we must analyse the minimizers

of Q̂(T i , gvc). This form is rescaled in the sense that the leading-order term of Q is

δ−3/2Q̂, and the coefficients of Q̂ do not depend on δ. This implies that the collection

of velocities minimizing Q̂ is also independent of δ. Substitution of any such collection
into the second term in the right-hand side of (3.32) yields a quantity of order δ−1/2 (at

most). Since Q̂ is independent of δ, its minimizing vectors T̂
i
are also δ-independent.

Consequently, the blow-up rate of the dissipation depends on whether the minimum

of Q̂(T i , gvc) is positive. If it is, the extensional effective viscosity λ� is of order δ−3/2,
otherwise λ� grows no faster than δ−1/2. Which type of behaviour occurs, depends
on the validity of the estimate (3.5). As mentioned in § 3.1, (3.5) may fail for certain
particle arrays. In this section, we provide geometric conditions which ensure the

positivity of min Q̂, and give examples of networks for which this minimum is zero.
The principal conclusion here is that extensional viscosity of suspensions with the
same overall volume fraction of particles may vary by an order of magnitude in the
interparticle distance, depending on the geometry of a particle array.

3.3.2. Strong blow-up of λ�. Percolating rigidity networks

For the rest of this section, we consider the steady flow of the suspension
corresponding to the boundary conditions (3.30) with the extension rate ε = 1.

The network Γ partitions Ω into a disjoint union of polygons, called Delaunay
cells. When points xj are distributed randomly in Ω , the interior Delaunay cells are
typically triangles. This simple but important fact can be explained as follows. The
edges of Voronoi tessellation are perpendicular bisectors of the edges of Delaunay
cells. If an interior Delaunay cell is, for instance, a quadrilateral, then any two vertices
lying on a diagonal cannot be neighbours, and therefore the point of intersection of
four edges of the Voronoi tessellation must be equidistant from the four vertices. This
means that a convex quadrilateral may be a Delaunay cell only if all four vertices lie
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Figure 8. Delaunay cells of a generic network. The shaded quadrilateral represents a defect
Delaunay cell.

Figure 9. A triangle resists deformation, while a quadrilateral can be easily sheared without
changing the side lengths.

on a circle. When the vertices of the network are randomly placed, the likelihood of
four (or more) points lying on the same circle is small. It is natural to call such cells
the defect cells. Therefore, most of the interior Delaunay cells of a random network
are triangles. Other polygonal cells (quadrilateral, pentagonal etc.) are typically small
in number, isolated and are likely to be unstable in the actual flow.

Since the boundary edges of the network are vertical, the cells adjacent to the
boundary are typically quadrilateral. An example of a generic Delaunay network is
shown in figure 8.

We now demonstrate that a typical geometric arrangement of small groups of
three or four neighbouring particles can change the order of magnitude of the
extensional effective viscosity. Specifically, consider two basic geometric structures in
the network: a triangle and a quadrilateral in figure 9. When the lower-order terms
in Q are neglected, we neglect the dissipation due to local rotations and shear, and
take into account only the local squeeze flows. Therefore, a possible interpretation of

the approximation δ−3/2Q̂ ≈ Q is that local rotations of particles are dissipation-free.
This leads us to picture the network as a framework of deformable bars, that are free
to rotate around the joints (vertices of the network), while changing the lengths of the
bars leads to strong dissipation. In this picture, the fundamental difference between
a triangle and a quadrilateral becomes clear. A triangle cannot be deformed without
changing the lengths of the sides. In contrast, a quadrilateral easily changes its shape
under shear without changing the lengths of the sides and thus without an increase
in the approximate dissipation rate. We can say that a triangle is rigid, whereas a
quadrilateral is flexible. The three simple examples that make these notions rigorous
are provided in Appendix C.
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Clusters of connected triangles support the squeeze mode in the sense that
the corresponding bar framework cannot be easily compressed, so extensional (or
compressional) deformation of the corresponding particle array leads to strong
dissipation of order δ−3/2. If a network contains enough interconnected triangular
cells to span the whole network, then such a network is called quasi-triangulated.
Because of the structural properties of Delaunay-type networks, a generic network is
quasi-triangulated. For such networks, the leading term in the asymptotics λ� can be

effectively computed by minimizing the form Q̂, that is, the minimum is unique and
can be found by solving the truncated linear system (3.7), and the solution obtained
is unique up to a uniform horizontal translation.

Our results concerning the estimate (3.5) apply to an even broader class of networks
called percolating rigidity networks. In these networks, the number of triangular cells
may be relatively small, as indicated by the examples below. Percolating rigidity is
ensured by the presence of a spanning quasi-triangulated subgraph which we call
a rigid backbone. In a typical Delaunay network, the defect cells are likely to be
isolated, so that the backbone coincides with the whole graph. However, a much
smaller backbone is sufficient to ensure percolating rigidity. In particular, a backbone
might have the form of a triangulated path in figure 11. Using techniques from
linear algebra, we can show that the extensional effective viscosity λ� of suspensions
corresponding to such networks is O(δ−3/2). The necessary definitions and proofs are
presented in Appendix D. The main idea of the proofs is based on the following

observation. The dissipation form Q̂(T i , gvc) is a sum of non-negative terms, namely

Q̂(T i , gvc) =
1

2

N∑
i=1

∑
j∈Ni

Cij
sp((T i − T j ) · q ij )2 +

∑
i∈I

Ci
sp((T i − gvc) · q i)2. (3.33)

This shows that min Q̂(T i , gvc) = 0 if and only if all the quadratic terms in (3.33) are
zero, or, equivalently, the minimizing vectors T i , i = 1, 2, . . . , N satisfy the system of
equations

(T i − T j ) · q ij = 0 (i = 1, 2, . . . , N, j ∈ Ni), (3.34a)

(T i − gvc) · q i = 0 (i ∈ I ). (3.34b)

Hence, if (3.34) does not have solutions, (3.5) must hold. It is important to point
out that (3.34) is much simpler than the network equations. Its physical meaning
is as follows. If a collection of T i solves (3.34) then the relative velocities T i −
T j are oriented perpendicular to q ij = (xi − xj )/|xi − xj |. Therefore, solutions of
(3.34) correspond to local shear motions. Therefore, the leading term of the discrete
dissipation form degenerates exactly when applying extensional boundary conditions
induces local shear motions of all pairs of neighbouring particles.

Also, it should be noted that if the estimate (3.5) holds for some subnetwork,
then it also holds for the whole network. This is clearly seen from (3.33), because a
subnetwork is obtained from the full network by removing some edges. Since each
edge corresponds to a non-negative term in the dissipation form, we can decrease
dissipation only by removing edges. This observation can be used to reduce the
network to a simpler subnetwork for which it is easier to determine whether (3.5)
holds.

Examples of quasi-triangulated and percolated rigidity graphs are presented in
figures 10 and 11. First, we observe that a restriction to Ω of a periodic rectangular
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(a) (b)

Figure 10. (a) A rectangular graph is not quasi-triangulated. (b) A triangular graph is
quasi-triangulated.

(a) (b) (c)

Figure 11. (a) A triangulated path. This percolating rigidity network is quasi-triangulated.
(b) A percolating rigidity network that does not contain a triangulated path. (c) A network
that contains a triangulated path (and thus possesses percolating rigidity), but is not
quasi-triangulated.

lattice is not quasi-triangulated. By contrast, a periodic triangular lattice restricted to
Ω is quasi-triangulated (see figure 10).

Generally, if a network is not periodic, but all of its interior Delaunay cells
are triangles, then this network is quasi-triangulated. However, a quasi-triangulated
network is not necessarily a triangulation, because some defect cells may still occur.
An example in figure 11 shows that the fraction of the defect cells may be rather large.

We now present another class of percolating rigidity networks: networks that
contain a path connecting ∂Ω+ and ∂Ω−, such that all edges in this path are oriented
along the e2-direction (vertical). A simple example is a periodic square lattice oriented
parallel to the sides of Ω (figure 10a). This network does not have a triangulated
rigid backbone, but the leading term of the discrete dissipation form is still non-
degenerate. To explain this, we can use the above mentioned analogy with a bar
framework. Clearly, applying the extensional boundary conditions to a vertical path
of bars makes them compress and thus produces strong blow-up. Consequently, the
asymptotics of the extensional effective viscosity is of order δ−3/2 (strong blow-up of
λ�. Asymptotic formulae of Nunan & Keller (1984) also predict strong blow-up of
the extensional viscosity for cubic lattices. Thus, our results are consistent with the
results of Nunan & Keller. See § 3.4 for a more detailed comparison, and Appendix
E for a more general criterion of this type and the proof of strong blow-up.

The above considerations show that the strong blow-up of λ� is generic. However,
it is possible to construct special particle arrays for which the leading term in the
asymptotics of λ� is zero. A simple example of such an array is a rectangular lattice
rotated so that none of its interior edges is vertical. Let k denote a unit vector that
is parallel to neither e1 nor e2. The interior edges of the rectangular network in
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Figure 12. A rotated rectangular lattice of 12 vertices.

figure 12 are either parallel or perpendicular to k, while the prescribed boundary
velocities are parallel to e2. This misalignment will lead to weak blow-up. Here we

follow the general strategy outlined in § 3.3.2. To show that min Q̂ = 0, it is enough to
find non-trivial velocities T i that solve the system (3.34). This is done in Appendix E.

3.4. Comparison with some results for periodic cubic arrays in dimension three

The main objective of the network approximation is to define effective properties
for non-periodic deterministic or random arrays. Although techniques of periodic
homogenization are well developed (Bensoussan, Lions & Papanicolaou 1978;
Sanchez-Palencia 1980; Jikov, Kozlov & Oleinik 1994 and references therein), non-
periodic geometries are much less understood. At the end of this section, we compare
our results applied in the particular case of a periodic square array (in dimension
two) with the results of Nunan & Keller (1984) for cubic arrays in dimension three.

The effective viscosity of an infinite periodic suspension obtained by Nunan &
Keller (1984) is the fourth-order tensor µ� (in this section, we use the notation from
Nunan & Keller 1984). In an effective flow with the constant strain rate γ , the effective
stress is

S0
ij = 2µ�

ijklγkl − Pδij , (3.35)

where P is an effective pressure. Hereinafter, summation over repeated indices is
assumed. Nunan & Keller (1984) obtained the following formula for the components
of µ�:

µ�
ijkl = 1

2
µ(1 + β)

(
δikδjl + δilδjk − 2

3
δij δkl

)
+ µ(α − β)

(
δijkl − 1

2
δij δkl

)
, (3.36)

where δij is equal to one if i = j , and zero otherwise. Also, δijkl = 1 if all indices are
equal, otherwise δijkl = 0. The term µ is the fluid viscosity, and α, β are functions of
the small parameter ε, related to the typcial interparticle distance δ as follows:

ε =
δ

2a + δ
≈ δ

2a
as δ → 0. (3.37)

(Note that this is true for periodic arrays, and may not hold for the more general
arrays considered in the paper.) When the effective flow is incompressible, γii = 0, so
(3.36) simplifies to

µ�
ijkl = 1

2
µ(1 + β)(δikδjl + δilδjk) + µ(α − β)δijkl . (3.38)

For simple cubic lattices, up to the terms of order O(1) in ε (Nunan & Keller 1984),

α = 3
16

πε−1 + 27
80

π ln ε−1, (3.39)

and

β = 1
4
π ln ε−1. (3.40)
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Suppose that the imposed effective flow is a steady shear with the velocity v =
(κx3, 0, 0) (three-dimensional analogue of (2.3)), where κ > 0 is a constant shear rate.
The components of the corresponding strain rate tensor γ are γ13 = γ31 = κ > 0 and
γij = 0 for other values of (i, j ). Then, using (3.38), we obtain from (3.35) that the
only non-zero components of the effective deviatoric stress tensor 2µ�γ are

(2µ�γ )13 = (2µ�γ )31 = 2µ(1 + β)κ. (3.41)

Since α is not present in (3.41), the non-zero components of the deviatoric effective
stress are of order ln ε−1, and thus the shear effective viscosity calculated by the
three-dimensional analogue of definition (2.15) is of order ln ε−1 (weak blow-up in
dimension three). The weak blow-up was not identified in Nunan & Keller (1984),
but it can easily be deduced from the formulae derived there.

In the case of an extensional flow, velocity vector v = (κx1, κx2, −2κx3), (compare
with (2.4)), where κ > 0 is a constant extension rate. The strain rate tensor is

γ =

⎛⎜⎝κ 0 0

0 κ 0

0 0 −2κ

⎞⎟⎠ . (3.42)

Then, using (3.35) and (3.38) we obtain the deviatoric stress

2µ�γ =

⎛⎜⎝L 0 0

0 L 0

0 0 −2L,

⎞⎟⎠ , (3.43)

where

L = 2κµ(1 + β) + κµ(α − β). (3.44)

Components of the deviatoric stress contain α and are therefore of order ε−1.
Consequently, the extensional effective viscosity is of order ε−1 (strong blow-up
in dimension three).

Although Nunan & Keller (1984) did not address the issue of weak versus strong
blow-up for the effective viscosity, (3.39)–(3.44) are consistent with the results for
square lattices in § 3.3.2 of this paper in the following sense. If a periodicity cell
corresponding to a simple cubic lattice is subjected to a uniform shear (extensional)
flow, then the straightforward calculation presented above shows that the shear
(extensional) effective viscosity exhibits weak (strong) blow-up. However, for other
lattice types such as body centred cubic (BCC) and face centred cubic (FCC), formulae
from Nunan & Keller (1984) imply strong blow-up of both viscosities, whereas our
approach leads to the weak blow-up of the shear viscosity for all two-dimensional
lattices. There are two reasons for this. (i) In Nunan & Keller (1984), effective
viscosity is defined for unbounded periodic arrays. Our definition is different because
it takes into account boundary effects which are known to be essential in rheological
measurements. (ii) In Nunan & Keller (1984), the particle velocities are specified
beforehand (see their formulae (5) and (6)). These formulae imply that translational
velocities of the particles are exactly the imposed shear flow velocities, and angular
velocity is the same for all particles. It is not clear if such particle velocities occur in
actual flows. In BCC and FCC lattices, this choice of particle velocities gives rise to
local squeezing flows, and thus to strong blow-up.

We conclude this section with a brief summary of relevance of two-dimensional
calculations for three-dimensional suspensions, and their limits of validity. First, we
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observe that the issue of weak versus strong blow-up is qualitatively the same in
both two and three dimensions. The only difference is quantitative: while strong and
weak blow-up in three dimensions has singularities δ−1 and ln(δ−1), respectively, the
analogous singularities in two dimensions are δ−3/2 and δ−1/2.

There is one essential difference. In two dimensions, for typical arrays of disks,
the gaps separate the fluid domain into a large number of disconnected (isolated)
triangular regions, which may have different pressures. This creates local pressure
gradients across the gaps (in the direction pij , see figure 3) and may cause Poiseuille-
like flow (seepage) of fluid across the gaps. The effect of Poiseuille-like flows in two
dimensions has been investigated by Berlyand, Gorb & Novikov (2005b). By contrast,
in three dimensions, the flow region outside the gaps is connected, and the analogous
local pressure gradients do not arise.

This justifies the use of two-dimensional analysis (which is technically simpler) in
the three-dimensional suspension problem.

4. Conclusions
We have studied finite size and particle–wall effects in effective rheology of

concentrated non-colloidal suspensions with complex geometry. A small interparticle
distance parameter δ was used to describe the high-concentration regime for particle
arrays which are not necessarily periodic (i.e. random).

Our approach is to approximate the dissipation rate of a continuum system by its
discrete analogue, the discrete dissipation form. This approximation was developed,
and the leading term was rigorously justified, by Berlyand et al. (2005a). We use
the discrete approximation for the dissipation rate to obtain the approximations
of the shear (µ�) and extensional (λ�) effective viscosities. Analysis of asymptotic
behaviour (weak vs. strong blow-up) is the main subject of this paper. We have
demonstrated that the discrete approximation is efficient in this analysis. The focus
of the investigation is on suspensions of finite size, where the effective viscosity is
strongly influenced by the particle–wall effects, or equivalently, by the prescribed
conditions on the external boundary of the flow. Accordingly, the presence of two
viscosities, even for a random macroscopically isotropic array, can be attributed to
the cubic anisotropy due to two types of external boundary condition (shear and
squeeze) applied in two perpendicular directions. This phenomenon would not be
present in an infinite macroscopically isotropic array where the effective viscosity
would be represented by a single scalar quantity. The difference between the finite-
and infinite-size cases supports the view of Sierou & Brady (2002) that the notion of
a ‘universal’ effective viscosity curve is questionable. Indeed, the measurable effective
properties are not purely material constants, but may incorporate the effects due to
the finite size of the apparatus.

Sierou & Brady (2001) calculated the high-frequency dynamic viscosity of
concentrated suspensions as a function of volume fraction φ by means of accelerated
Stokesian dynamics simulations. Numerical results indicate a singular behaviour of
the effective viscosity as φ approaches the maximal close-packing fraction φrcp . We
quote here from (Sierou & Brady (2001): ‘The exact form of this singular behaviour
is not known. Results from lubrication theory for cubic lattices would suggest that
the singular form should consist both of 1/ε and ln ε−1, where ε = 1 − (φ/φrcp)1/3,
but the relative amount of each term is unknown . . . As far as we are able to tell at
this point, the ln ε−1 behaviour accurately describes the numerical data.’
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One our objectives was to address the issue of the unexpectedly weak blow-
up in Sierou & Brady (2001), and determine the asymptotic order of the effective
viscosity coefficients as δ → 0. Our analysis of the shear viscosity µ�, based on the
discrete network approximation, showed that µ� = O(δ−1/2) as δ → 0, while the local
lubrication analysis in a single gap between two particles gives a higher rate O(δ−3/2).
In dimension three, the corresponding rates, given by the network approximation,
are, respectively, ln δ−1 and δ−1 (see Berlyand et al. 2005a). Thus, our analysis offers a
theoretical explanation of the weak blow-up of the shear viscosity. We also present a
simple example of the flow that exhibits weak blow-up of µ�. This example suggests
that in the actual suspension shear flow, the particles rotate with finite angular
velocities while their translational velocities scale as δ.

The asymptotic order of the extensional viscosity λ� depends on the geometry of
the particle array. For generic disordered arrays, the network partitions the domain
into polygons (Delaunay cells), most of which are triangles. We have showed that
for these generic arrays λ� = O(δ−3/2). The same asymptotic rate is obtained for a
larger class of networks called quasi-triangulated. In a quasi-triangulated network, the
percentage of triangular cells may be relatively small, but the subnetwork containing
triangular cells must be spanning. Another class of networks for which λ� = O(δ−3/2),
consists of rectangular periodic arrays aligned with the boundary of the flow. More
generally, the same rate is obtained for arrays containing a single spanning chain of
neighbouring particles, perpendicular to the part of the boundary where the velocity
is prescribed.

We show that for strong blow-up, the leading term in the asymptotics of λ� can be
uniquely determined by solving a simplified linear system of the network equations,
provided that the array is quasi-triangulated. Such a simplified system provides an
efficient computational tool for evaluating the dependence of the effective viscosity on
the geometry of the particle array and external boundary conditions. We also present
an example of a network which exhibits weak blow-up of λ�.

Our results imply that the ratio of λ� to µ� for generic disordered particle arrays
is O(δ−1). Since µ� is proportional to an off-diagonal component of the effective
stress, and λ� is proportional to the effective normal stress difference, our results
indicate non-Newtonian behaviour of the effective fluid. This conclusion agrees with
the results of Sierou & Brady (2002) who detected a non-Newtonian effective rheology
by numerically calculating normal stress differences under shear boundary conditions.

The authors wish to thank Professor John F. Brady for bringing the work of Sierou
& Brady (2001) to their attention. L. B. was supported in part by NSF grant DMS-
0204637. A. P. was supported in part by ONR grant N00014-001-0853 and by DOE
grant DE-FG02-05ER25709.

Appendix A. Shear and extensional flows. Ratio of the viscosities in a
Newtonian fluid

The following types of flow are relevant to our investigation.
Shear flow. Consider the steady shear flow of a homogeneous fluid characterized

by the constant shear rate γ . The velocity is given by (2.3) and the strain rate tensor
is

e0
sh =

1

2

(
0 γ

γ 0

)
. (A 1)
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Since the stress tensor is symmetric and independent of x,

E0 =

∫
Ω

S0 · e0
sh dx = 1

2
S0

12γ |Ω |, (A 2)

where |Ω | =
∫

Ω
dx.

In the case of a homogeneous Newtonian fluid with viscosity µ, S0 = 2µe0
sh − P I,

so that S0
12 = µγ . Using (2.14), we obtain

µ� = µ, (A 3)

as expected.
Extensional flow. In this case, the fluid is being extended in the horizontal direction

and simultaneously contracted in the vertical direction at the same constant rate ε.
The velocity is given by (2.4) and the strain rate is

e0
ext =

(
ε 0
0 −ε

)
. (A 4)

For a homogeneous Newtonian fluid, S0
ext = 2µe0

ext − P I, and thus S0
11 = 2µε − P ,

S0
22 = −2µε − P . Next, using (2.17), we obtain

λ� = 4µ. (A 5)

Therefore, for a Newtonian effective fluid the ratio λ�/µ� is equal to 4 (in two
dimensions).

Appendix B. Full system of the network equations
The sum of the local dissipation forms Wij , W i in (2.26), (2.27) gives the global

(discrete) dissipation form

Q =
∑
Πij

W ij +
∑
Πi

W i

=

N∑
i=1

∑
j ∈ Ni
j < i

{
δ−3/2Cij

sp[(T i − T j ) · qij ]2 + δ−1/2C
ij
sh[(T

i − T j ) · pij + aωi + aωj ]2

+ δ−1/2C
ij
rota

2(ωi − ωj )2
}

+
∑
i∈I

{
δ−3/2Ci

sp[(T i − g) · q i]2 + δ−1/2Ci
rota

2(2ωi)2

+ δ−1/2Ci
sh[(T

i − g) · pi + aωi]2
}
, (B 1)

where I denotes the set of indices of the vertices adjacent to the boundary.
Although (B 1) accounts for three elementary motions depicted in figure 5, it does

not account for a local motion when fluid moves between two motionless disks. This
corresponds to the Poiseuille-type flow in a narrow channel whose upper and lower
walls are curved. Since we focus on modelling viscometric experiments using boundary
conditions (2.2), (2.5) (with no macroscopic pressure gradient imposed), contribution
of these flows is not significant for three-dimensional suspensions. As explained in § 1,
our goal here is study three-dimensional suspensions using a two-dimensional model
for technical simplicity.

Note that in a physically two-dimensional problem (uniaxial rigid rods in a fluid)
this contribution may no longer be negligible, as shown in Berlyand et al. (2005b).
Indeed, in two dimensions, for typical arrays of disks (see figure 8), the gaps separate
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the fluid domain into a large number of disconnected (isolated) triangular regions,
which may have different pressures. This creates local pressure gradients across the
gaps (in the direction pij , see figure 3) and leads to a Poiseuille-like flow (seepage)
of fluid across the gaps. By contrast, in three dimensions, the flow region outside the
gaps is connected, and the analogous local pressure gradients do not arise.

It is well known that solving the minimization problem for Q is equivalent to
solving the linear system (Euler–Lagrange equations), which is obtained by equating
the gradient of Q to zero. Setting partial derivatives to zero with respect to T i

l , l = 1, 2
we obtain ∑

j∈Ni

{
δ−3/2Cij

sp[(T i − T j ) · q ij ]q ij
}

+
∑
j∈Ni

{
δ−1/2C

ij
sh[(T

i − T j ) · pij + aωi + aωj ] pij
}

+ Bi = Fi , (B 2)

for each i = 1, 2, . . . , N , where

Bi =

{
δ−3/2Ci

sp(T i · q i)q i + δ−1/2Ci
sh[T

i · pi + aωi] pi if i ∈ I,

0 otherwise,
(B 3)

(B 4)

Fi =

{
δ−3/2Ci

sp(g · q i)q i + δ−1/2Ci
sh(g · pi) pi if i ∈ I,

0 otherwise.
(B 5)

(B 6)

Next, equating the partial derivatives ∂Q/∂ωi to zero, we obtain∑
j∈Ni

{
δ−1/2C

ij
sh[(T

i − T j ) · pij + aωi + aωj ]
}

+
∑
j∈Ni

{
δ−1/2C

ij
rot (ω

i − ωj )
}

+ Bi = Mi ,

(B 7)

for all i = 1, . . . , N , where

Bi =

{
δ−1/2Ci

sh(T
i · pi + aωi) + 4δ−1/2Ci

rotω
i if i ∈ I,

0 otherwise.
(B 8)

Mi =

{
δ−1/2Ci

sh(g · pi) if i ∈ I,

0 otherwise.
(B 9)

Equations (B 2) and (B 7) are, respectively, the equations of force and torque balance
of the particles, and the minimization in (B 1) ensures that the rigid-body translational
and angular velocities are chosen in such a way that the suspension is in mechanical
equilibrium. Note also that (B 2) is a system of 2N equations, and (B 7) is a system
of N equations. Together they form 3N equations for 3N unknowns (T i , ωi). The
coefficients and right-hand side of (B 2) are of order δ−3/2 and δ−1/2 whereas all
the coefficients in (B 7) are of order δ−1/2. When all T i are zero (no translations),
the remaining terms are of order δ−1/2, but in the case ωi = 0, i = 1, 2, . . . , N (no
rotations), the remaining equations contain terms of order δ−3/2. This reflects the
well-known fact that the contributions from local translational spring motions are
stronger than the contributions from rotational and other translational motions.
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Figure 13. Three simple networks. (a) Ê = 0. (b, c) Ê > 0.

Appendix C. Simple examples of rigidity and flexibility
Suppose that the boundary conditions are given by (3.30) with ε = −1. In this

section, we present three simple examples of networks with small numbers of vertices.

One of these networks has Ê = 0, and the other two examples have Ê > 0.

Example 1. Consider the network in figure 13(a). This an example of a network for

which Ê = 0. To demonstrate this, we show that there is a non-trivial particle velocity

vector z such that Q̂(z) = 0.
The vectors q ij are defined as follows.

q1 = e2, q4 = −e2,

q12 = q34 = 1√
2
(e1 − e2),

q13 = q24 = − 1√
2
(e1 + e2)

⎫⎪⎬⎪⎭ (C 1)

Next, define T i as follows.

T 1 = e2, T 2 = −e1, T 3 = e1, T 4 = −e2. (C 2)

The functional Q̂ corresponding to this network is

Q̂ = C1
sp[(T 1 − e2) · q1]2 + C12

sp [(T 1 − T 2) · q12]2

+ C13
sp [(T 1 − T 3) · q13]2 + C24

sp [(T 2 − T 4) · q24]2

+ C34
sp [(T 3 − T 4) · q34]2 + C4

sp[(T 4 + e2) · q4]2. (C 3)

When T i are defined by (C 2), all the scalar product in brackets in (C 3) are zero, and

therefore min Q̂ = 0.

Example 2. Next, consider the network of three vertices in figure 13(b). For this

network, min Q̂ > 0. To show this, consider the system corresponding to the general
system (3.34).

(T 1 + e2) · e2 = 0, (T 1 − T 2) · q12 = 0, (T 1 − T 3) · q13 = 0, (C 4a–c)
(T 2 − T 3) · q23 = 0, (T 2 − e2) · e2 = 0, (T 3 − e2) · e2 = 0. (C 4d–f)

We prove that the system (C 4) has no solutions. Indeed, (C 4e, f ) imply T 2 = t2e1+e2,
T 3 = t3e1 + e2, for some scalars t2, t3. Next, (C 4d) yields (t2 − t3)e1 · q23 = 0, and thus
t2 = t3 = t . Substituting T 2 = T 3 = te1 + e2 into (C 4b) and (C 4c) we obtain

(T 1 − te1 − e2) · q12 = 0, (C 5a)
(T 1 − te1 − e2) · q13 = 0. (C 5b)

Since q12, q13 are non-collinear, (C 5) yields T 1 = te1 + e2, which contradicts (C 4a).



blow-up of dissipation rate for concentrated suspensions 29

Example 3. Next, consider a rectangular network of four vertices in figure 13(c).
The system (3.34) for this example becomes

(T 1 − T 2) · e1 = 0, (T 1 − T 4) · e2 = 0, (T 2 − T 3) · e2 = 0, (T 3 − T 4) · e1 = 0,

(C 6a–d)

(T 1 + e2) · e2 = 0, (T 2 + e2) · e2 = 0, (T 3 − e2) · e2 = 0, (T 4 − e2) · e2 = 0.

(C 4e–h)

Equations (C 6g) and (C 6h) yield T 3 = t3e1 + e2, T 4 = t4e1 + e2, with some scalars
t3, t4. Next, (C 6b) and (C 6c) produce T 1 = t1e1 + e2, T 2 = t2e1 + e2, which contradict,
respectively, (C 6e) and (C 6f ).

The three examples above seem to indicate that two basic building blocks for

networks with Ê > 0 (strong blow-up) are triangles and rectangles aligned with the
edges of Ω . Misaligned rectangular structures such as shown in figure 13(a), would

produce Ê = 0 (weak blow-up).

Appendix D. Properties of quasi-triangulated subgraphs
Given an arbitrary network graph Γ , we define its maximal quasi-triangulated

subgraph ΓM by the following iterative procedure.

Step 1. Consider interior vertices which are connected to ∂Ω− and call these vertices
generation one vertices. All interior edges connecting these vertices are generation one
edges. Add all generation one edges and vertices to the subgraph.

Step 2. Consider all remaining vertices which are connected to the vertices of the
subgraph by at least two non-collinear edges. These vertices and edges belong to
generation two. Add them to the subgraph. Note that the non-collinearity condition
leads to the formation of ‘supportive triangles’.

Step 3. Repeat step 2 until no more vertices can be added.

If the maximal quasi-triangulated subgraph ΓM contains all interior vertices of Γ ,
we call the graph Γ quasi-triangulated. These graphs have the following properties.

Proposition D.1. Suppose that the network graph Γ is quasi-triangulated. Then there
is a unique solution of the system (3.8), up to a horizontal translation.

Proposition D.2. Suppose that the boundary conditions are given by (3.30) and
the network graph Γ contains a backbone. Then Γ is a percolating rigidity graph.
Consequently, the extensional effective viscosity λ� of suspensions corresponding to such
networks is O(δ−3/2).

Proposition D.1 will be proved if we prove the following.

Proposition D.3. Suppose the network graph Γ is quasi-triangulated. Then every
solution of the homogeneous system (3.12) is of the form tw0 where t is arbitrary real
and w0 is the vector components of which are given by (3.11).

Proof. First note that (3.12) is the Euler–Lagrange system for the functional

Qhom = 1
2
Az · z = 1

2

N∑
i=1

∑
j∈Ni

Cij
sp((T i − T j ) · q ij )2 +

∑
i∈I

Ci
sp(T i · q i)2. (D 1)
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Clearly the minimum of Qhom is zero. Thus every solution of (3.12) is a minimizer of
Qhom. On the other hand, Qhom(T 1, . . . , TN ) = 0 if and only if the vectors T i satisfy
the system of equations

(T i − T j ) · q ij = 0 (i = 1, 2. . . , N, j ∈ Ni) (D 2a)
T i · q i = 0 (i ∈ I ). (D 2b)

Therefore, a vector z = (T 1, . . . , TN )T solves (3.12) if and only if T i , i = 1, . . . , N

solve (D 2). The solvability of (D 2) will be directly linked to the geometric structure
of the graph Γ . We begin by observing that q i = ±e2. Thus, (D 2b) yields

T i = t ie1(i ∈ I ), (D 3)

that is, T i are horizontal for all boundary vertices. Next, consider boundary vertices
xi , i ∈ I− (these are vertices connected to ∂Ω−), and recall that they belong to a path
Γ −, edges of which are interior edges of Γ . Hence, if i1 ∈ I−, then there is at least
one i2 ∈ I−, i2 �= i1 such that xi1 and xi2 are connected by an interior edge bi1i2 . Using
(D2a) and (D3), we obtain

(T i1 − T i2 ) · q i1i2 = (t i1 − t i2 )e1 · q i1i2 = 0. (D 4)

Furthermore, q i1i2 is non-vertical, that is, q i1i2 · e1 �= 0, which yields t i1 = t i2 . Since each
xi , i ∈ I− is connected to at least one other, we obtain

T i = te1 (i ∈ I−), (D 5)

with the same scalar t .
Since the graph is quasi-triangulated, there exists an interior vertex xl1 ∈ Γ ,

xl1 /∈ Γ −, connected to at least two vertices xi1, xi2, i1, i2 ∈ I− by non-collinear edges.
Then, using (D2) we obtain

(T l1 − te1) · q l1,i1 = 0, (D 6a)
(T l1 − te1) · q l1,i2 = 0. (D 6b)

Since q l1,i1 and q l1,i2 are linearly independent, (D 6) yields T l1 = te1. Next, let G1 be
the union of Γ −, xl1 and all the edges which connect xl1 to Γ −. Using the definition
of the quasi-triangulated graph again, we find a vertex xl2 , not contained in G1, and
connected to G1 by two non-collinear edges. Repeating the argument following (D 6),
we see that T l2 = te1. Then we choose G2 to be the union of G1, x l2 and all edges
of Γ which connect them. Repeating the process we find the vertex x l3 and continue
until we obtain

T i = te1, i = 1, . . . , N (D 7)

with the same scalar t . This means that every solution of (D 2) is of the form tw0.
Since solution spaces of (D 2) and (3.12) are the same, the proposition is proved.

The following discrete Korn inequality follows immediately from the Propo-
sition D.3.

Corollary D.1. Suppose that Γ is quasi-triangulated. Let W ⊂ R2N be the one-
dimensional subspace spanned by w0, and let W ⊥ denote the orthogonal complement of
W in R2N . Also, let Qhom and A be, respectively the quadratic form defined in (D 1) and
its matrix. Then there is a constant C > 0 such that the Korn-type inequality

1
2
Az · z = Qhom(z) � C z · z (D 8)

holds for all z ∈ W⊥.
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Another straightforward corollary is as follows.

Corollary D.2. Suppose that Γ is quasi-triangulated. Then the system

Az = f

has a unique solution z ∈ W ⊥ provided f ⊥W .

Remark. The projection PW onto the subspace W is defined by

PW z =
z · w0

N
w0.

In terms of vectors T i ,

PW (T 1, T 2, . . . , TN ) =

n∑
i=1

T i
1

N
w0.

Therefore, using the definition of f in terms of Ri , we can write the condition f ⊥W

as
n∑

i=1

Ri
1 =

N∑
i=1

Ri · e1 = 0. (D 9)

The vectors Ri in (3.10) satisfy (D 9), so that f with Ri defined by (3.10) is
orthogonal to W . This gives the unique solvability of the network equations (3.8).

Corollary D.3. Suppose that Γ is quasi-triangulated. Then there is a unique z∗ ∈
W ⊥ such that every solution of (3.8) is of the form z∗ + tw0, where tw0 ∈ W .

This means that solution of the network equations (3.8) is unique up to a horizontal
translation.

Proof of Proposition D.2.

Proof. First we observe that the form Q̂ is a sum of non-negative terms, each of
which corresponds to an edge of the network graph Γ . Removal of an edge from

Γ corresponds to deletion of one non-negative term in Q̂. This means that for each

subgraph Γ ′ of Γ , Q̂(Γ ) � Q̂(Γ ′). Next we choose Γ ′ to be the maximal quasi-

triangulated subgraph of Γ . We show that min Q̂(Γ ′) > 0. Indeed, min Q̂(Γ ′) = 0 if
and only if the corresponding system (3.34) has a solution. To show that this system

has no solutions, introduce new unknowns T̂
i
= T i − e2. Then from (3.34), we obtain

(T̂
i − T̂

j
) · q ij = 0, (D 10)

T̂
i · q i =

{
−2 when i ∈ I+,

0 when i ∈ I−.
(D 11)

Since the vectors q i , are vertical, (D 11) yields

T̂
i
= t ie1 (i ∈ I−), (D 12)

where t i is a constant. Recall that Γ contains a path Γ − which consists of all boundary
vertices connected to ∂Ω− and all interior edges connecting these vertices. Hence,
each xi1, i1 ∈ I− has a neighbour xi2, i2 ∈ I− and thus (t i1 − t i2 )e1 · q i1i2 = 0 from
(D 10). Since two boundary vertices cannot be joined by a vertical edge, e1 · q i1i2 �= 0.
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This implies that all t i , i ∈ I− are equal, that is

T̂
i
= te1 (i ∈ I−), (D 13)

where t is a constant. Next, consider the boundary path Γ −. By definition of Γ ′

there is a vertex xj1, j1 �∈ I− connected to the boundary vertices xi1, xi2 , i1, i2 ∈ I− by
non-collinear edges of Γ . Then from (D 10) and (D 13) we have

(T̂
j1 − te1) · qj1,i1 = 0,

(T̂
j1 − te1) · qj1,i2 = 0.

Since qj1,i1 and qj1,i2 are linearly independent, we obtain T̂
j1

= te1. Now this argument
can be used recursively. Next we choose G1 to be the union of vertices xi , i ∈ I−, xj1

and the edges of Γ ′ which connect these vertices. Repeating the argument, we find
a vertex xj2 �∈ G1, connected to at least two vertices of G1 by non-collinear edges,

which yields T̂
j2

= te1, and so on, until we obtain T̂
i
= te1 for all vertices xi which

belong to Γ ′. By assumption, Γ ′ contains at least one vertex x+ ∈ I+; but then

T̂
+ · q+ = −te1 · e2 = 0 which contradicts (D 11). This contradiction shows that the

system (D10), (D 11) has no solutions.

Appendix E. Strong and weak blow-up for rectangular networks

Proposition E.1. Suppose that a network graph Γ contains a path P ± such that
(i) it connects ∂Ω+ and ∂Ω−,
(ii) all edges of P ± are vertical.

Then Γ is a percolating rigidity graph.

Proof. First, we note that if a path P ± has percolating rigidity, then the ‘larger’
graph Γ is also a percolating rigidity graph. Therefore, we need only show that a path

of vertical edges has percolating rigidity, that is, the quadratic form Q̂ corresponding
to such a path is positive-definite.

For simplicity, consider a path containing three vertices. The argument can be
directly generalized to an arbitrary number of vertices. The general strategy in
suggested in § 3.3.2 is to study the system (3.34). If this system has no solutions, then
(3.5) must hold. In the present case, (3.34) has the form

(T 1 − e2) · e2 = 0, (E 1a)

(T 1 − T 2) · e2 = 0, (E 1b)

(T 2 − T 3) · e2 = 0, (E 1c)

(T 3 + e2) · e2 = 0. (E 1d)

Introduce new unknown vectors T̂
i

= T i + e2 (i = 1, 2, 3). Equation (E 1d) yields

T̂
3
= t3e1, where t3 is a scalar. Then from (E1 c) we obtain T̂

2
= t2e1, and then yields

T̂
1

= t1e1, which contradicts (E 1a). The contradiction shows that the system (E 1b)
has no solutions. The argument can easily be modified to show that if at least one of
the edges of a path is non-vertical, then this path does not have percolating rigidity.

Next, we present a proof that the network in figure 12 produces weak blow-up.
The argument admits a straightforward generalization to a network with an arbitrary
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number of vertices. We begin by considering a single path connecting ∂Ω+ and ∂Ω−.
This path may be any of the three such paths in figure 12.

The system (3.34) written for the path has the form

(T 1 − e2) · e2 = 0, (E 2a)

(T 1 − T 2) · k = 0, (E 2b)

(T 2 − T 3) · k = 0, (E 2c)

(T 3 − T 4) · k = 0, (E 2d)

(T 4 + e2) · e2 = 0. (E 2e)

For technical reasons it is convenient to introduce new unknowns u1 = T 1 − e2,
u12 = T 1 − T 2, u23 = T 2 − T 3, u34 = T 3 − T 4. The relations between uij and T i are

T 1 = u1 + 2e2, (E 3a)

T 2 = u1 + 2e2 − u12, (E 3b)

T 3 = u1 + 2e2 − u12 − u23, (E 3c)

T 4 = u1 + 2e2 − u12 − u23 − u34. (E 3d)

From (E 2a–d) we see that u1 = t1e1, and ui,i+1 = ti,i+1k⊥, i = 1, 2, 3, where k⊥ denotes
a unit vector orthogonal to k, and t1, ti,i+1 are scalars. The problems of solving (E 2)
is now reduced to finding t1, ti,i+1 such that (E 2e) is satisfied. Equation (E 2e) shows
that

T 4 = t4e1 − e2, (E 4)

where t4 is a scalar. Equating (E 4) and (E 3), we obtain the equation for t1, t12, t23, t34
and t4:

t4e1 = t1e1 + e2 − (t12 + t23 + t34)k
⊥. (E 5)

This yields two scalar equations

0 = 1 − (t12 + t23 + t34)k
⊥ · e2, (E 6)

and

t1 − t4 = (t12 + t23 + t34)k
⊥ · e1. (E 7)

The system of two equations (E 6), (E 7) for five unknowns has infinitely many non-
trivial solutions as long as k⊥ · e2 �= 0, that is, the interior edges of the path are
non-vertical.

At the next step of construction, we consider the full lattice in figure 12 containing
12 vertices. The interior edges of the graph are oriented either by the unit vector
k as above (longitudinal edges), or by k⊥ (latitudinal edges). We view the graph as
the union of three paths of longitudinal edges extending from ∂Ω− to ∂Ω+, with
latitudinal edges connecting these paths. To obtain the desired example, we choose
the velocities T i for one of the paths, as explained above. Then we prescribe the
same velocities to the corresponding vertices of two remaining paths. Now, if two
neighbours xi , xj belong to different paths, then T i = T j , so the corresponding
equation (T i − T j ) · k⊥ = 0 of the system (3.34) is satisfied. When the neighbours
xi , xj belong to the same path, the corresponding equation (T i −T j ) · k = 0 is satisfied
by the choice of T i , T j . Therefore, the whole system (3.34) in this case has infinitely

many non-trivial solutions. Each of these solutions makes Q̂, and thus the leading
term in the asymptotics of λ�, zero.
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